
1

An alternative to Bank-Switching in the 41CL
Monte Dalrymple

Background

Bank-switching was not part of the original 41C hardware or software. But with up to 64

functions possible in the 4096-word address space of a page, it is quite easy to run out of address

space in a plug-in module. With bank-switching, and up to four banks per page, the equivalent of

16,384 instruction words will be available in each page. This paper will review how bank-

switching is used in the 41C, and introduce an alternative allowed by the Memory Management

Unit (MMU) in the 41CL.

Bank-switching

Bank-switching is controlled by four instructions (with mnemonics ENROM1, ENROM2,

ENROM3 and ENROM4) that are ignored by the CPU in the 41C. These instructions control the

state of two extra bits of program address. These extra two bits of address are not global, but are

specific to the address of the page(s) where the ENROM instructions are executed, because the

hardware that holds the bits usually exists in the module where the code resides. Thus each page

(or pair of pages) has an independent bank select facility.

Because of the way the Ports are related to page addresses in the 41C family, only one set

of bank-select bits exists for each port. Thus pages 8 and 9 share two bank-select bits, as do

pages A-B, C-D and E-F. Pages 4, 6 and 7 can have individual bank-select bits. HP embraced

bank-switching in the 41CX, and pages 3 and 5 share a set of bank-select bits, used for the X-

Functions in the 41CX. The operating system pages (0-2) do not support bank-switching. Had

the 41C series continued beyond the CX, I suspect that might have changed.

The 41C family actually powers down during light sleep (between keypresses), and the

state of the bank-select bits are not preserved during light sleep. This is both a blessing and a

curse. It is a blessing because it means that nothing special needs to be done at the end of a

function to restore the state of the bank-select bits to known values. The light-sleep state does



2

that automatically. The drawback of this operation is that any bank switching must be done every

time a function is started or restarted (with a partial key sequence, for example).

Switching the current bank can be tricky. Think about it: the CPU is happily fetching

instructions, when it encounters an ENROM instruction that it treats as a NOP (No Operation). The

CPU blithely continues on and fetches the instruction at the subsequent program address.

Meanwhile the page-select bits have been modified, meaning that the memory address is actually

pointing at a completely different section of memory. This is why many people who write

software don't care for bank switching, and in-line bank switching is often referred to as "pulling

the rug out from under the running program."

Actually, the problem can be even worse, if the timing of the actual bank switch is not

clearly specified relative to the execution of the bank-switch instruction. In the case of the 41C,

at least for the HP-designed ROM used in the 41CX, the word immediately following the ENROM

instruction is fetched from the current bank, while all subsequent instructions are fetched from

the new bank.

The usual way to deal the problem of switching banks in-line in a program is to use a

single software interface routine to switch banks. This saves the software writer from having to

think about always having to make the code match up at certain locations in different banks.

With a common interface routine only one piece of code needs to line up between the various

banks.

Bank switching was only implemented in a few pieces of 41C software, and I'll illustrate

three different techniques that I have found that were used for switching banks.

An example from the 41CX X-Functions is shown in Listing 1. The bank-switching done

in this case is unique, because of the way the code is arranged. The main code for the X-

Functions is hardwired in Page 3 of the CPU program address space, but only Page 5 has a

second bank. This means that the ENROM instruction is actually changing the bank-select bits for

a page other than the page where the instruction resides, completely avoiding the inline-code

problem. So the code merely switches the bank in Page 5 and then jumps to a Page 5 address.

3089 180 ENROM2 ; select bank 2 in page 5
308A 145162 GOLNC 5851 ; call a subroutine in page 5

Listing 1



3

The second example, shown in Listing 2, is from the HP-41 Advantage module. This

module occupies two consecutive pages, with a second bank only in the upper page, so it is also

somewhat unique. Bank switching is only done from the lower page, and automatically jumps to

a specified location in the upper page, again completely avoiding the inline switching problem.

Code in the second bank is accessed through a subroutine call, with ten bits of the

destination address specified by the word following the actual subroutine call. Much like the

port-dependent subroutine call used to start the bank-switch (the GSB41C mnemonic), there are

four different subroutine entry points, depending on which 1K section (called a quad) of the page

the destination resides in. The assembler program will automatically pick the correct subroutine

entry point. The software in Bank 2 (of the upper page) returns using a normal RTN instruction,

without needing to restore the Bank 1 selection. The Bank 1 selection is done after the return.

8249 36D08C1DF GSB41C (GB2Q2) 85DF ; bank 2 call
824C 08C #08C ; at address 988C
...
85D6 1B0 (GB2Q0) C=STK ; entry for quadrant 0-3: get target addr
85D7 330 CXISA ; 0 1 2 3
85D8 0CB GONC +25 85F1
85D9 1B0 (GB2Q1) C=STK ; entry for quadrant 4-7: get target addr
85DA 330 CXISA ; . . . . 0 1 2 3
85DB 1F6 C=C+C XS ; . . . . 0 2 4 6
85DC 1F6 C=C+C XS ; . . . . 0 4 8 C
85DD 236 C=C+1 XS ; . . . . 1 5 9 D
85DE 06B GONC +13 85EB
85DF 1B0 (GB2Q2) C=STK ; entry for quadrant 8-B: get target addr
85E0 330 CXISA ; . . . . . . . . 0 1 2 3
85E1 1F6 C=C+C XS ; . . . . . . . . 0 2 4 6
85E2 236 C=C+1 XS ; . . . . . . . . 1 3 5 7
85E3 1F6 C=C+C XS ; . . . . . . . . 2 6 A E
85E4 03B GONC +7 85EB
85E5 1B0 (GB2Q3) C=STK ; entry for quadrant C-F: get target addr
85E6 330 CXISA ; . . . . . . . . . . . . 0 1 2 3
85E7 1F6 C=C+C XS ; . . . . . . . . . . . . 0 2 4 6
85E8 236 C=C+1 XS ; . . . . . . . . . . . . 1 3 5 7
85E9 1F6 C=C+C XS ; . . . . . . . . . . . . 2 6 A E
85EA 236 C=C+1 XS ; . . . . . . . . . . . . 3 7 B C
85EB 1F6 C=C+C XS ; . . . . 2 A 2 A 4 C 4 C 6 E 6 E
85EC 013 GONC +2 85EE
85ED 236 C=C+1 XS ; . . . . . . 3 B . . 5 D . . 7 F
85EE 1F6 C=C+C XS ; . . . . 4 4 6 6 8 8 A A C C E E
85EF 013 GONC +2 85F1
85F0 236 C=C+1 XS ; . . . . . 5 . 7 . 9 . B . D . F
85F1 23A C=C+1 M ; increment return address
85F2 170 STK=C ; and put on stack
85F3 3DA CSR M ; shift current page to C<3>
85F4 3DA CSR M
85F5 3DA CSR M
85F6 23A C=C+1 M ; increment to next page
85F7 1BC RCR 11 ; rotate computed address to C<6:3>
85F8 180 ENROM2 ; enable bank 2
85F9 1E0 GOTOC ; and jump into bank at target addr

Listing 2



4

The final example, shown in Listing 3, is from the HEPAX module. This is the most

complex bank-switch code, because it allows the use of all four banks. This bank-switch code at

addresses FC3-FCA must be replicated in all four banks for the common interface. In this case

the two words following the call to the bank-switch subroutine specify the bank and destination

address within the bank. But unlike the HP implementations, this case is actually a jump rather

than a subroutine call, so the code only returns to Bank 1 with an explicit jump back. Of course it

would be easy to modify this code to implement subroutine calls into another bank.

814F 3B508C39A GSB41C (GOBNK) 8F9A ; go to address in different bank!
8152 3FA #3FA ; BANK 3, address 7FA
8153 007 #007
...
8F9A 1B0 (GOBNK) C=STK ; get address of first argument
8F9B 330 CXISA ; and then the argument
8F9C 23A C=C+1 M ; point at second argument
8F9D 0B6 ACEX XS ; put bank digit in A.XS
8F9E 1BC RCR 11
8F9F 0B6 ACEX XS
8FA0 03C RCR 3
8FA1 0B6 ACEX XS ; restore A.XS, bank digit is in C.S
8FA2 27C RCR 9 ; align argument in C<7:4>
8FA3 170 STK=C ; and save it on stack for now
8FA4 0BC RCR 5 ; align address of second arg
8FA5 330 CXISA ; and fetch the arg
8FA6 2BC RCR 7 ; get it out of the way
8FA7 1B0 C=STK ; and retrieve first arg from stack
8FA8 0BC RCR 5 ; target address to C<2:0>
8FA9 3DA CSR M ; five shifts to get page into C<4>
8FAA 3DA CSR M
8FAB 3DA CSR M
8FAC 3DA CSR M
8FAD 3DA CSR M
8FAE 1BC RCR 11 ; align target addr to C<6:3>
8FAF 170 STK=C ; and put this address on the stack
8FB0 276 C=C-1 XS ; bank digit is in C.XS, decrement it
8FB1 276 C=C-1 XS ; dec again, if carry go to bank 2
8FB2 0BF GOC (GOB2) +23 8FC9
8FB3 276 C=C-1 XS ; dec again, if carry go to bank 3
8FB4 07F GOC (GOB3) +15 8FC3
8FB5 083 GONC (GOB4) +16 8FC5 ; else go to bank 4
...
8FC3 140 (GOB3) ENROM3 ; select bank 3
8FC4 3E0 RTN ; go to address on stack
8FC5 1C0 (GOB4) ENROM4
8FC6 3E0 RTN
8FC7 100 (GOB1) ENROM1
8FC8 3E0 RTN
8FC9 180 (GOB2) ENROM2
8FCA 3E0 RTN

Listing 3

Bank-switching is a powerful way to expand program address space, but it is not without

complications. The examples above show how these complications were managed, both by HP

and the authors of the HEPAX module. The last two cases are complicated mainly because of the



5

necessity to interpret the one or two words required to encode the destination address into the

program lines.

The 41CL fully supports the bank-switching hardware and software of the 41C, with the

bank-select bits contained in the CPU logic itself. The 41CL contains a large physical memory,

and it was easiest to load the contents of four banks of code in successive pages of this memory.

This physical memory organization is also the most efficient for implementing the PLUG

functions that insert an image into a Port. But the downside of this memory organization is that

unless four pages of space are reserved up front for an image, it becomes a compatibility

nightmare to upgrade an image (like the 41CL Extra Functions) from a non-bank-switched

version to a bank-switched version. This led me to look for alternatives to bank switching.

Dynamic page-switching

The MMU in the 41CL allows pages to be dynamically mapped and unmapped under

program control, and I deliberately spaced out the MMU entries in memory to provide room for

up to different four MMU entries for each page and bank. My original thought when I spaced

out the MMU entries in memory was that this would allow multiple "personalities" that could be

selected under user control, but the software to implement this feature has not yet been written.

(I'm actually working on it right now.)

The way that HP used bank-switching was the inspiration for the page-switching that I

will describe here. Instead of remapping the current page, this software will program the MMU

so that Page 4 accesses a specified page in the physical memory of the 41CL. Then the software

can access routines in Page 4 directly, with known logical memory addresses. At the end of the

routine that dynamically loaded Page 4, the previous MMU programming for Page 4 is restored

and the machine continues on as if nothing happened. I chose Page 4 because this page will

almost always be empty. Only 'Angel Martin's Library-4 software currently uses Page 4.

I remap Page 4 to provide fast access to subroutines at fixed addresses. If you have done

much coding for the 41C in machine language, you know that calling a subroutine with a fixed

address is much more efficient than dealing with what is called a port-dependent address. Port-

dependent subroutine calls (using the GSB41C mnemonic) and port-dependent long jumps

(using the GOL41C mnemonic) actually call helper subroutines in the 41C mainframe code to



6

calculate the destination address, because code in a plug-in module usually has no a priori

knowledge of which page it is executing from. These helper subroutines are great for the

programmer, as long as you remember the restrictions that come with them.

The first restriction is that the routines use the C register in the CPU, so you cannot use

this register to pass information to your target subroutine. The second restriction is that the

helper routines use an additional subroutine level, beyond the one required to return to the calling

routine. Given that the subroutine stack is only 4 levels deep in the CPU, and the Operating

System return address is already using one level, this can lead to unexpected behavior if you are

not paying attention. I have accidentally violated both of these restrictions during development,

and once in released code! In addition, as you saw in Listing 2 and Listing 3, these helper

routines also require three words of program space, where a normal subroutine call requires just

two program words.

The code for the combined load/unload routine is shown in Listing 4. The entry point to

map a page into Page 4 is LLIB and the entry point to restore the previous Page 4 mapping is

ULIB. Most of the operations are the same for the two cases, so a common routine made sense.

Calling the LLIB routine requires that the physical address for the "library" code be loaded to

the X field in the B register in the CPU prior to calling the subroutine. The physical address for

the MMU is twelve bits, so it won't fit in a program word. I could have used the technique of

Listing 2, namely ten bits in the next program line and four different entry points to signal the

final two bits, or the technique of Listing 3, with two following program lines, but it seemed

simpler to use a register to hold the destination address.

Even though it is not necessary at this point, given the dearth of software that uses Page

4, the code here implements a virtual four-level stack for the MMU entry for Bank 1 of Page 4.

Only the first bank is remapped because I don't anticipate ever using bank-switching in a Page 4

library (and only the latest 41CL FPGA programming supports bank-switching in Page 4

anyway). If access to more code space is required, just load a new page to Page 4.

The MMU entry for Bank 1 of Page 4 is stored at physical address 0x804040, and the

three succeeding addresses are used for the virtual stack. A call of LLIB moves the contents of

address 0x804042 to address 0x804043, 0x804041 to 0x804042, and 0x804040 to 0x804041.

This makes room for the new programming for the MMU. A call of ULIB reverses this

sequence, discarding the "bottom" of the stack and placing a null entry on the top of the stack.



7

0EAE 03E (LLIB) B=0 S ; load library tagged by B.S = 0
0EAF 023 GONC (LIBSU) +4 0EB3
0EB0 05E (ULIB) C=0 S
0EB1 23E C=C+1 S
0EB2 0FE BCEX S ; unload library tagged by B.S = 1
0EB3 1303F0 (LIBSU) LDI 3F0
0EB5 270 DADD=C
0EB6 3F0 PFAD=C ; select 41cl peripheral
0EB7 04E C=0 W
0EB8 2DC PT= 13
0EB9 090 LC 2 ; C = 20000000000000
0EBA 010 LC 0 ; C = 20000000000000
0EBB 210 LC 8 ; C = 20800000000000
0EBC 010 LC 0 ; C = 20800000000000
0EBD 110 LC 4 ; C = 20804000000000
0EBE 010 LC 0 ; C = 20804000000000
0EBF 110 LC 4 ; C = 20804040000000
0EC0 090 LC 2 ; C = 20804042000000
0EC1 010 LC 0 ; C = 20804042000000
0EC2 150 LC 5 ; C = 20804042050000
0EC3 2DE ?B#0 S ; load/unload case?
0EC4 023 GONC (LLIB1) +4 0EC8 ; branch if load case
0EC5 15C PT= 6
0EC6 050 LC 1 ; C = 2x804041050000 (unload case)
0EC7 013 GONC (LIB0) +2 0EC9
0EC8 210 (LLIB1) LC 8 ; C = 20804042058000
0EC9 01C (LIB0) PT= 3
0ECA 10E A=C W ; A = 2x80404205*000
0ECB 082 B=A PT ; load lib: 8, unload lib: 0
0ECC 1FC (LIB1) #1FC ; read mmu stack
0ECD 0B8 C=REGN 2 ; get the data
0ECE 0AA ACEX WPT ; combine address & data
0ECF 0AE10E C=A W ; and get it in C
0ED1 15C PT= 6
0ED2 2DE ?B#0 S ; load/unload case?
0ED3 02F GOC (LIB2) +5 0ED8 ; branch if unload case
0ED4 1A2 A=A-1 PT ; load library: next lower (src)
0ED5 222 C=C+1 PT ; next higher (dst)
0ED6 05C PT= 4 ; can't do jump here because of carry!
0ED7 023 GONC (LIB3) +4 0EDB
0ED8 162 (LIB2) A=A+1 PT ; unload library: next higher (src)
0ED9 262 C=C-1 PT ; next lower (dst)
0EDA 05C PT= 4
0EDB 110 (LIB3) LC 4 ; write command digit
0EDC 1FC #1FC ; load: 2>3, 1>2, 0>1, unload 1>0, 2>1, 3>2
0EDD 0AE10E C=A W ; set up C for next write
0EDF 1BE A=A-1 S ; decrement loop counter in A.S
0EE0 363 GONC (LIB1) -20 0ECC ; repeat loop if not done
0EE1 0EA BCEX WPT ; almost done, get final mmu data
0EE2 15C PT= 6
0EE3 2DE ?B#0 S ; load/unload case?
0EE4 01F GOC (LIB4) +3 0EE7 ; branch if unload case
0EE5 042 C=0 PT ; load library: bottom of stack
0EE6 013 GONC (LIB5) +2 0EE8
0EE7 262 (LIB4) C=C-1 PT ; unload library: top of stack
0EE8 05C (LIB5) PT= 4
0EE9 110 LC 4
0EEA 1FC #1FC ; write final data
0EEB 149026 GOLNC [ENCP00] 0952 ; deselect 41cl peripheral and return

Listing 4



8

The code in Listing 4 is obviously specific to Bank 1 of Page 4, but the exact same

technique can be used for any or all pages that are mapped by the MMU, because all MMU

entries are spaced apart in memory.

Conclusion

I am currently in the process of upgrading the 41CL Extra Functions to use dynamic

page-switching, expanding the feature set to make several of the functions more useful to users. I

make no claim that this technique is better than bank-switching, and in fact some of the

downsides should be immediately obvious. In particular, it requires both more code and a longer

execution time than even the HEPAX-style bank switching.

For example, loading a new Page 4 mapping requires 93 instruction times, and restoring

the previous Page 4 mapping requires another 92 instruction times. But it is important to

remember that the code in Page 4 has a fixed address, which allows for shorter, and faster, jumps

and calls, so much of this overhead may be reclaimed during function execution. If the software

stack of MMU entries were not required loading a library would be much faster, and unloading

would not be required at all.

A second issue has to do with error handling. Normally, exiting a function in the case of

an error means sending an error message to the display and jumping to a mainframe error

cleanup routine. And if the "Error Ignore" status bit is set the error message step is skipped and

the code returns directly to the operating system. In either case there is no opportunity to unload

the dynamic code from Page 4! The way around this problem is to use short "stubs" of code in

Page 4 to return to error message code in the calling page. This special error message code

unloads Page 4 before proceeding with the normal error message exit. Somewhat annoying, but

still manageable.

If nothing else, I expect that the dynamic page-switching presented here demonstrates the

true power of the MMU in the 41CL.


