
Page 1 of 4

Making the 41CL User-friendly
Monte J. Dalrymple

The 41CL is an upgrade to the venerable HP-41, created by replacing the CPU board in a 41C/CV/CX
fullnut with the PC board shown in Figure 1. This paper will not discuss the hardware (1) but instead will
concentrate on the software required to take advantage of the new features of the design.

The NEWT (Nut, Expanded With
Turbo) microprocessor (2) used in the
41CL provides a number of new
features surrounding a clone of the
CPU originally used in the 41C
series. These new features,
particularly the Memory
Management Unit (MMU), are
probably more complex than the
typical 41C user is used to dealing
with.

The 41CL attempts to hide this
complexity from the typical user,
while still providing full control over
the hardware to the advanced user.
This is accomplished by including a
special set of functions, much like
the Extended Functions present in
the 41CX.

Figure 1 - Old and new CPU board

These functions, which I call Y-Functions and which Catalog as YFNS -1A, aim to provide an intuitive
way for the user to manage the module images present in the Flash memory on the new CPU board as
well as control the new Turbo operating speed modes. In addition, for the advanced user, there are
functions to PEEK and POKE memory, move entire 4k blocks of memory, access the on-chip peripheral
registers, and do PUT and GET operations with the on-board serial port.

Probably the most significant new feature provided by the 41CL is the wide range of module images
available in the on-board Flash memory. These images can be "plugged into a Port" just as a physical
module would be plugged into a Port. First, the four-character module identifier is entered into the Alpha
register and the appropriate PLUG command is executed from the keyboard. Twelve PLUG commands
are available: PLUG1, PLUG1L and PLUG1U control Port 1 on the calculator, with corresponding
commands for the other three ports.

The PLUG commands parse the module identifier and verify that the selection is valid for the Port
selected. Note that only the first and last characters of the module identifier are parsed by the software to
increase performance. Just like the original physical modules, some module images can only be used in
particular ports, and if an invalid configuration is attempted a DATA ERROR message will result. Once
the selection is validated, the software then automatically programs the MMU so that accesses for
addresses in that Port will be redirected to the module image in the Flash memory. At this point a Catalog



Page 2 of 4

will verify that the module is "plugged into the Port" and available for use. No power-down of the
calculator is required. While a module image is plugged into a port the physical port is not accessed by the
CPU, so physical modules may be present in the Port without any electrical conflict.

In addition to the module images in Flash memory, blocks of RAM memory may also be plugged into a
Port. This allows the on-board RAM memory to be used as HEPAX memory or MLDL memory, for
example. An experienced user may want to copy a module image to RAM, modify it, and then plug this
modified image into a Port. I had to do this while debugging the design, as I had some errors in several of
the new functions that I had to patch before they could be used.

Unplugging a module image from a Port is just as simple. There are twelve UNPLUG commands
available: UPLUG1, UPLUG1L and UPLUG1U control Port 1, with corresponding commands for the
other three ports. Unlike the PLUG commands, no checking for configuration is performed. The software
merely invalidates the appropriate MMU entries so that the CPU resumes access of the physical Port. The
user is responsible for not unplugging half of a module image! Table 1 shows the module images
available and the corresponding module identifiers.

Module Image Mnemonic Module Image Mnemonic Module Image Mnemonic
Advantage Pac 1B A41P ESMLDL 7B ESML Plotter Pac 1A PLOT
ADVENTURE #1 ADV1 Extended I/O 1A EXIO PPC Module PPCM
ADVENTURE #2 ADV2 Financial Pac FINA Real Estate Pac 1A REAL
AECROM AECR FUNSTUFF ROM FUNS SANDMATH-7 SANA
Autofinance AFIN Games Pac 1A GAME Securities Pac 1A SECY
ALPHA ROM ALPH GMAC 2 GMAS SGS GAS SGSG
Assembler 3 ASMB GMAC 3 GMAT SIM Module SIMM
ASTRO-2010 ASTT HEPAX 1D HEPX SKWID ROM SKWD
HP Autostart AUTO Home Management HOME Simplex Module SMPL
Aviation Pac 1A AVIA JMB-MATH JMAT Statistics Pac 1B STAT
Boeing-B52 B52B JMB-MATRIX JMTX Stress Analysis STRE
Buffer ROM BUFR LABELS ROM LBLS Structural Analysis STRU
CCD Module 1B CCDR LANDNAV LAND SUP-R-ROM SUPR
Chemistry User CHEM Math Pac 1D MATH Survey Pac 1B SURV
CHESS ROM CHES Machine Design Pac MCHN Thermal Pac 1A THER
Circuit Analysis Pac CIRC Melbourne ROM MELB Toolbox ROM TOOL
Clinical Lab Pac CLIN Mil Engineering MILE TREKKIES ROM TREK
CurveFit ROM CURV MLROM MLRM UNITCONV ROM UNIT
Data Acquisition DACQ Navigation Pac 1B NAVI USPS Module USPS
David Assembler DAVA NFCROM NFCR alternate YFNS YFNS
HP-IL Development DEVI NAVCOM 2 NVCM default YFNS YFNZ
HP- IL Diagnostic DIIL P3B/C Aviation Pac P3BC HP41Z ROM Z41Z
Diamond ROM DMND PCODER 1A PCOD
ES41 Module E41S Petroleum Pac 1A PETR

Table 1 - Module images and mnemonics

Finding a place for these new functions in the address space of the CPU was a challenge, because I
wanted to do it in the most compatible fashion. At power-up the MMU is disabled and all MMU entries
are cleared. Rather than reserve a specific Port for the Y-Functions, while the MMU is disabled they are
mapped to Page 7 of the CPU address space. This is the page reserved for HP-IL functions, so HP-IL will
not be available to the user until the MMU is enabled.



Page 3 of 4

Before enabling the MMU however, the user must PLUG the Y-Functions into a Port. Then the MMUEN
command must be executed. At this point the 41CL is ready to go. If you enable the MMU before
plugging the Y-Functions into a Port you have a plain 41CV/CX with none of the new features available.

There are three other MMU commands available besides MMUEN. The MMUDIS command disables the
MMU and restores the 41CL to the power-on condition (as far as the memory is concerned). MMUCLR
clears all MMU entries, and so should only be executed while the MMU is disabled. Otherwise the Y-
Functions will no longer be available. Finally, the MMU? command tests the status of the MMU,
returning 0 in the X register if the MMU is disabled and 1 in the X register if the MMU is enabled.

Control of the various Turbo modes is similar. The TURBO2, TURBO5, TURBO10, TURBO20 and
TURBO50 commands select the corresponding Turbo clock speed. The TURBOX command disables the
Turbo mode and returns to 1x operation. The TURBO? command returns the current value of the Turbo
mode in the X register. All of the module images, as well as the majority of the operating system
software run at the selected speed. However, there are several timing loops in the operating system that
will always automatically run at 1x.

The commands above will probably be sufficient for the vast majority of users, and that's why I made
them as simple as possible to use. But advanced (or adventurous) users can take advantage of the
remainder of the Y-Functions and the features of the NEWT microprocessor itself.

Most of these advanced commands require one or more memory addresses, and in designing the
command operation I chose to use the Alpha register for the user to input this information (because it is
hexadecimal). The command is then executed, and if data is returned the value in the Alpha register is
modified appropriately. Some commands also return a status in the X register (0 for success and 1 for
failure). Most of the commands allow both a logical address, which is the 16-bit HP-41 address plus the
bank select information, or a physical address, which is the native NEWT 24-bit address. See Figure 2 for
the requirements for the various commands.

Four basic commands for dealing with memory are
available. The YMCLR command initializes a 4k block of
memory to a specified value, while the YMCPY command
copies from one 4k block of memory to another. As I
mentioned previously, this command is handy for moving a
module image to RAM for editing. This copy command
accepts either logical (what the CPU uses) or physical
memory addresses for both source or destination. These
commands do not check for an attempt to write to Flash
memory though, so be careful.

The YPEEK and YPOKE commands read or write a
specific word to or from memory (remember that the NEWT memory is 16-bits wide) or an on-chip
peripheral port. The YPOKE command must be used with care, however, because the entire address space
of the NEWT microprocessor is available. This means that a user can write directly to a word in the X-,
Y-, Z- or T register, or to the variables used by the operating system or directly to an MMU register.

Command Address format
YMCLR PPPPPP-DDDD or

LLLL-B-DDDD
YMCPY PPP>PPP or

PPP>L-B or
L-B>PPP or
L-B>L-B

YPEEK & YPOKE PPPPPP-DDDD or
LLLL-B-DDDD or
R---DDDD

YFERASE PPPPPP
YFWR PPP-PPP
Table 2 - Command address format



Page 4 of 4

The last two memory commands deal with the Flash memory, and I hesitated including them because they
require even more care by the user. Because they operate on the Flash memory, the code must be
relocated to RAM before the commands can be used. Both commands check to make sure that they are
running from RAM before executing, and will return an error message without executing if they are
located in the Flash memory. Both commands will also return an error message without executing if the
user attempts to erase or program the area of Flash that holds the operating system. Allowing either
operation on the operating system area would turn the 41CL into a brick.

The YFERASE command erases a 32kx16 block of Flash to the default state of 0xFFFF for every word.
The YFWR copies a 4kx16 block of RAM to a 4kx16 block of Flash. An attempt to copy from Flash will
return an error message without executing, because the only operation allowed during a Flash write is the
writes themselves. Both of these Flash-related commands actually control the Turbo mode during
execution. The YFERASE command executes in 1x mode because it has to wait 1.6s for the erase
operation to conclude before returning to the operating system. The YFWR command executes in 50x
mode for maximum speed. Both commands return to the previous Turbo mode upon completion.

The final commands, which I am still working on, deal with the on-board RS-232 port. Since there is no
existing way for the serial signals to exit the calculator these functions may be rarely used, but who
knows. Currently I have commands to set the baud rate: BAUD96, BAUD48, BAUD24 and BAUD12
select 9600, 4800, 2400 and 1200 baud respectively. There will also be PUT and GET commands to
transfer individual bytes. I also plan to include block transfer commands, and am open to suggestions on
how they should work.

Although it has taken forever, the 41CL is almost ready for prime time. In retrospect, I underestimated the
effort required to both design the PC board and write the software to control the new features on the
NEWT microprocessor. But I think that the result has been worth the effort (and wait).

References

(1) Dalrymple, Monte. "Calculator Brain Transplant." Circuit Cellar #243. October 2010.
(2) http://www.systemyde.com/pdf/newt.pdf


